Мера К. Шеннона. Формула Шеннона дает оценку информации независимо, отвлеченно от ее смысла: где n - число состояний системы; рi - вероятность (или относительная частота) перехода системы в i-е состояние, причем сумма всех pi равна 1.Если все состояния равновероятны (т.е. рi=1/n), то I=log2n.К. Шенноном доказана теорема о единственности меры количества информации. Для случая равномерного закона распределения плотности вероятности мера Шеннона совпадает с мерой Хартли. Справедливость и достаточная универсальность формул Хартли и Шеннона подтверждается и данными нейропсихологии.Главной положительной стороной формулы Шеннона является ее отвлеченность от семантических и качественных, индивидуальных свойств системы. В отличие от формулы Хартли, она учитывает различность, разновероятность состояний - формула имеет статистический характер (учитывает структуру сообщений), делающий эту формулу удобной для практических вычислений. Основной отрицательной стороной формулы Шеннона является то, что она не различает состояния (с одинаковой вероятностью достижения, например), не может оценивать состояния сложных и открытых систем, и применима лишь для замкнутых систем, отвлекаясь от смысла информации. Теория Шеннона разработана как теория передачи данных по каналам связи, а мера Шеннона - мера количества данных и не отражает семантического смысла.Увеличение (уменьшение) меры Шеннона свидетельствует об уменьшении (увеличении) энтропии (организованности) системы. При этом энтропия может являться мерой дезорганизации систем от полного хаоса (S=Smax) и полной информационной неопределенности (I=Imin) до полного порядка (S=Smin) и полной информационной определённости (I=Imax) в системе.