В этом случае усложним задачу. Пусть на частицы жидкости действуют следующие силы: сила тяжести; центробежная сила инерции (переносит движение от центра); кориолисовая сила инерции, которая заставляет частицы вращаться вокруг оси Z с одновременным поступательным движением.В этом случае мы получили возможность представить себе винтовое движение. Вращение происходит с угловой скоростью w. Нужно представить себе криволинейный участок некоторого потока жидкости, на этом участке поток как бы вращается вокруг некоторой оси с угловой скоростью.Частным случаем такого потока можно считать гидравлическую струю. Вот и рассмотрим элементарную струйку жидкости и применим в отношении к ней уравнение Бернулли. Для этого поместим элементарную гидравлическую струю в координатную систему XYZ таким образом, чтобы плоскость YOX вращалась вокруг оси OZ.Будем считать, что U – местная скорость жидкости во вращающейся плоскости YOX. ПустьFx1= Fy1= 0; Fz1=—g —составляющие силы тяжести (то есть ее проекции на оси координат), отнесенные к единичной массе жидкости. К этой же массе приложена вторая сила – сила инерции ω2r, где r – расстояние от частицы до оси вращения ее компоненты.Fx2= ω2x; Fy2= ω2y; Fz2= 0из-за того, что ось OZ «не вращается».Окончательно уравнение Бернулли. Для рассматриваемого случая:
Или, что одно и то же, после деления на g
Если рассмотреть два сечения элементарной струйки, то, применив вышеуказанный механизм, легко убедиться, что
где z1, h1, U1, V1, z2, h2, U2, V2 – параметры соответствующих сечений